Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Transcriptomic analysis of grain amaranth (Amaranthus hypochondriacus) using 454 pyrosequencing: comparison with A. tuberculatus, expression profiling in stems and in response to biotic and abiotic stress.

Identifieur interne : 002C66 ( Main/Exploration ); précédent : 002C65; suivant : 002C67

Transcriptomic analysis of grain amaranth (Amaranthus hypochondriacus) using 454 pyrosequencing: comparison with A. tuberculatus, expression profiling in stems and in response to biotic and abiotic stress.

Auteurs : John P. Délano-Frier [Mexique] ; Hamlet Avilés-Arnaut ; Kena Casarrubias-Castillo ; Gabriela Casique-Arroyo ; Paula A. Castrill N-Arbeláez ; Luis Herrera-Estrella ; Julio Massange-Sánchez ; Norma A. Martínez-Gallardo ; Fannie I. Parra-Cota ; Erandi Vargas-Ortiz ; María G. Estrada-Hernández

Source :

RBID : pubmed:21752295

Descripteurs français

English descriptors

Abstract

BACKGROUND

Amaranthus hypochondriacus, a grain amaranth, is a C4 plant noted by its ability to tolerate stressful conditions and produce highly nutritious seeds. These possess an optimal amino acid balance and constitute a rich source of health-promoting peptides. Although several recent studies, mostly involving subtractive hybridization strategies, have contributed to increase the relatively low number of grain amaranth expressed sequence tags (ESTs), transcriptomic information of this species remains limited, particularly regarding tissue-specific and biotic stress-related genes. Thus, a large scale transcriptome analysis was performed to generate stem- and (a)biotic stress-responsive gene expression profiles in grain amaranth.

RESULTS

A total of 2,700,168 raw reads were obtained from six 454 pyrosequencing runs, which were assembled into 21,207 high quality sequences (20,408 isotigs + 799 contigs). The average sequence length was 1,064 bp and 930 bp for isotigs and contigs, respectively. Only 5,113 singletons were recovered after quality control. Contigs/isotigs were further incorporated into 15,667 isogroups. All unique sequences were queried against the nr, TAIR, UniRef100, UniRef50 and Amaranthaceae EST databases for annotation. Functional GO annotation was performed with all contigs/isotigs that produced significant hits with the TAIR database. Only 8,260 sequences were found to be homologous when the transcriptomes of A. tuberculatus and A. hypochondriacus were compared, most of which were associated with basic house-keeping processes. Digital expression analysis identified 1,971 differentially expressed genes in response to at least one of four stress treatments tested. These included several multiple-stress-inducible genes that could represent potential candidates for use in the engineering of stress-resistant plants. The transcriptomic data generated from pigmented stems shared similarity with findings reported in developing stems of Arabidopsis and black cottonwood (Populus trichocarpa).

CONCLUSIONS

This study represents the first large-scale transcriptomic analysis of A. hypochondriacus, considered to be a highly nutritious and stress-tolerant crop. Numerous genes were found to be induced in response to (a)biotic stress, many of which could further the understanding of the mechanisms that contribute to multiple stress-resistance in plants, a trait that has potential biotechnological applications in agriculture.


DOI: 10.1186/1471-2164-12-363
PubMed: 21752295
PubMed Central: PMC3146458


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Transcriptomic analysis of grain amaranth (Amaranthus hypochondriacus) using 454 pyrosequencing: comparison with A. tuberculatus, expression profiling in stems and in response to biotic and abiotic stress.</title>
<author>
<name sortKey="Delano Frier, John P" sort="Delano Frier, John P" uniqKey="Delano Frier J" first="John P" last="Délano-Frier">John P. Délano-Frier</name>
<affiliation wicri:level="1">
<nlm:affiliation>Unidad de Biotecnología e Ingeniería Genética de Plantas, (Cinvestav-Unidad Irapuato) Km 9.6 del Libramiento Norte Carretera Irapuato-León, Apartado Postal 629, C.P. 36821, Irapuato, Gto,, México. jdelano@ira.cinvestav.mx</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">Mexique</country>
<wicri:regionArea>Unidad de Biotecnología e Ingeniería Genética de Plantas, (Cinvestav-Unidad Irapuato) Km 9.6 del Libramiento Norte Carretera Irapuato-León, Apartado Postal 629, C.P. 36821, Irapuato, Gto,</wicri:regionArea>
<wicri:noRegion></wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Aviles Arnaut, Hamlet" sort="Aviles Arnaut, Hamlet" uniqKey="Aviles Arnaut H" first="Hamlet" last="Avilés-Arnaut">Hamlet Avilés-Arnaut</name>
</author>
<author>
<name sortKey="Casarrubias Castillo, Kena" sort="Casarrubias Castillo, Kena" uniqKey="Casarrubias Castillo K" first="Kena" last="Casarrubias-Castillo">Kena Casarrubias-Castillo</name>
</author>
<author>
<name sortKey="Casique Arroyo, Gabriela" sort="Casique Arroyo, Gabriela" uniqKey="Casique Arroyo G" first="Gabriela" last="Casique-Arroyo">Gabriela Casique-Arroyo</name>
</author>
<author>
<name sortKey="Castrill N Arbelaez, Paula A" sort="Castrill N Arbelaez, Paula A" uniqKey="Castrill N Arbelaez P" first="Paula A" last="Castrill N-Arbeláez">Paula A. Castrill N-Arbeláez</name>
</author>
<author>
<name sortKey="Herrera Estrella, Luis" sort="Herrera Estrella, Luis" uniqKey="Herrera Estrella L" first="Luis" last="Herrera-Estrella">Luis Herrera-Estrella</name>
</author>
<author>
<name sortKey="Massange Sanchez, Julio" sort="Massange Sanchez, Julio" uniqKey="Massange Sanchez J" first="Julio" last="Massange-Sánchez">Julio Massange-Sánchez</name>
</author>
<author>
<name sortKey="Martinez Gallardo, Norma A" sort="Martinez Gallardo, Norma A" uniqKey="Martinez Gallardo N" first="Norma A" last="Martínez-Gallardo">Norma A. Martínez-Gallardo</name>
</author>
<author>
<name sortKey="Parra Cota, Fannie I" sort="Parra Cota, Fannie I" uniqKey="Parra Cota F" first="Fannie I" last="Parra-Cota">Fannie I. Parra-Cota</name>
</author>
<author>
<name sortKey="Vargas Ortiz, Erandi" sort="Vargas Ortiz, Erandi" uniqKey="Vargas Ortiz E" first="Erandi" last="Vargas-Ortiz">Erandi Vargas-Ortiz</name>
</author>
<author>
<name sortKey="Estrada Hernandez, Maria G" sort="Estrada Hernandez, Maria G" uniqKey="Estrada Hernandez M" first="María G" last="Estrada-Hernández">María G. Estrada-Hernández</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21752295</idno>
<idno type="pmid">21752295</idno>
<idno type="doi">10.1186/1471-2164-12-363</idno>
<idno type="pmc">PMC3146458</idno>
<idno type="wicri:Area/Main/Corpus">002D44</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002D44</idno>
<idno type="wicri:Area/Main/Curation">002D44</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002D44</idno>
<idno type="wicri:Area/Main/Exploration">002D44</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Transcriptomic analysis of grain amaranth (Amaranthus hypochondriacus) using 454 pyrosequencing: comparison with A. tuberculatus, expression profiling in stems and in response to biotic and abiotic stress.</title>
<author>
<name sortKey="Delano Frier, John P" sort="Delano Frier, John P" uniqKey="Delano Frier J" first="John P" last="Délano-Frier">John P. Délano-Frier</name>
<affiliation wicri:level="1">
<nlm:affiliation>Unidad de Biotecnología e Ingeniería Genética de Plantas, (Cinvestav-Unidad Irapuato) Km 9.6 del Libramiento Norte Carretera Irapuato-León, Apartado Postal 629, C.P. 36821, Irapuato, Gto,, México. jdelano@ira.cinvestav.mx</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">Mexique</country>
<wicri:regionArea>Unidad de Biotecnología e Ingeniería Genética de Plantas, (Cinvestav-Unidad Irapuato) Km 9.6 del Libramiento Norte Carretera Irapuato-León, Apartado Postal 629, C.P. 36821, Irapuato, Gto,</wicri:regionArea>
<wicri:noRegion></wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Aviles Arnaut, Hamlet" sort="Aviles Arnaut, Hamlet" uniqKey="Aviles Arnaut H" first="Hamlet" last="Avilés-Arnaut">Hamlet Avilés-Arnaut</name>
</author>
<author>
<name sortKey="Casarrubias Castillo, Kena" sort="Casarrubias Castillo, Kena" uniqKey="Casarrubias Castillo K" first="Kena" last="Casarrubias-Castillo">Kena Casarrubias-Castillo</name>
</author>
<author>
<name sortKey="Casique Arroyo, Gabriela" sort="Casique Arroyo, Gabriela" uniqKey="Casique Arroyo G" first="Gabriela" last="Casique-Arroyo">Gabriela Casique-Arroyo</name>
</author>
<author>
<name sortKey="Castrill N Arbelaez, Paula A" sort="Castrill N Arbelaez, Paula A" uniqKey="Castrill N Arbelaez P" first="Paula A" last="Castrill N-Arbeláez">Paula A. Castrill N-Arbeláez</name>
</author>
<author>
<name sortKey="Herrera Estrella, Luis" sort="Herrera Estrella, Luis" uniqKey="Herrera Estrella L" first="Luis" last="Herrera-Estrella">Luis Herrera-Estrella</name>
</author>
<author>
<name sortKey="Massange Sanchez, Julio" sort="Massange Sanchez, Julio" uniqKey="Massange Sanchez J" first="Julio" last="Massange-Sánchez">Julio Massange-Sánchez</name>
</author>
<author>
<name sortKey="Martinez Gallardo, Norma A" sort="Martinez Gallardo, Norma A" uniqKey="Martinez Gallardo N" first="Norma A" last="Martínez-Gallardo">Norma A. Martínez-Gallardo</name>
</author>
<author>
<name sortKey="Parra Cota, Fannie I" sort="Parra Cota, Fannie I" uniqKey="Parra Cota F" first="Fannie I" last="Parra-Cota">Fannie I. Parra-Cota</name>
</author>
<author>
<name sortKey="Vargas Ortiz, Erandi" sort="Vargas Ortiz, Erandi" uniqKey="Vargas Ortiz E" first="Erandi" last="Vargas-Ortiz">Erandi Vargas-Ortiz</name>
</author>
<author>
<name sortKey="Estrada Hernandez, Maria G" sort="Estrada Hernandez, Maria G" uniqKey="Estrada Hernandez M" first="María G" last="Estrada-Hernández">María G. Estrada-Hernández</name>
</author>
</analytic>
<series>
<title level="j">BMC genomics</title>
<idno type="eISSN">1471-2164</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amaranthus (genetics)</term>
<term>Computational Biology (MeSH)</term>
<term>Contig Mapping (MeSH)</term>
<term>Databases, Factual (MeSH)</term>
<term>Expressed Sequence Tags (MeSH)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Plant Leaves (genetics)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Stems (genetics)</term>
<term>Sequence Analysis, DNA (MeSH)</term>
<term>Stress, Physiological (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Amaranthus (génétique)</term>
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Analyse de séquence d'ADN (MeSH)</term>
<term>Bases de données factuelles (MeSH)</term>
<term>Biologie informatique (MeSH)</term>
<term>Cartographie de contigs (MeSH)</term>
<term>Feuilles de plante (génétique)</term>
<term>Protéines végétales (génétique)</term>
<term>Stress physiologique (MeSH)</term>
<term>Tiges de plante (génétique)</term>
<term>Étiquettes de séquences exprimées (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Amaranthus</term>
<term>Plant Leaves</term>
<term>Plant Stems</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Amaranthus</term>
<term>Feuilles de plante</term>
<term>Protéines végétales</term>
<term>Tiges de plante</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Computational Biology</term>
<term>Contig Mapping</term>
<term>Databases, Factual</term>
<term>Expressed Sequence Tags</term>
<term>Gene Expression Profiling</term>
<term>Sequence Analysis, DNA</term>
<term>Stress, Physiological</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
<term>Analyse de séquence d'ADN</term>
<term>Bases de données factuelles</term>
<term>Biologie informatique</term>
<term>Cartographie de contigs</term>
<term>Stress physiologique</term>
<term>Étiquettes de séquences exprimées</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Amaranthus hypochondriacus, a grain amaranth, is a C4 plant noted by its ability to tolerate stressful conditions and produce highly nutritious seeds. These possess an optimal amino acid balance and constitute a rich source of health-promoting peptides. Although several recent studies, mostly involving subtractive hybridization strategies, have contributed to increase the relatively low number of grain amaranth expressed sequence tags (ESTs), transcriptomic information of this species remains limited, particularly regarding tissue-specific and biotic stress-related genes. Thus, a large scale transcriptome analysis was performed to generate stem- and (a)biotic stress-responsive gene expression profiles in grain amaranth.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>A total of 2,700,168 raw reads were obtained from six 454 pyrosequencing runs, which were assembled into 21,207 high quality sequences (20,408 isotigs + 799 contigs). The average sequence length was 1,064 bp and 930 bp for isotigs and contigs, respectively. Only 5,113 singletons were recovered after quality control. Contigs/isotigs were further incorporated into 15,667 isogroups. All unique sequences were queried against the nr, TAIR, UniRef100, UniRef50 and Amaranthaceae EST databases for annotation. Functional GO annotation was performed with all contigs/isotigs that produced significant hits with the TAIR database. Only 8,260 sequences were found to be homologous when the transcriptomes of A. tuberculatus and A. hypochondriacus were compared, most of which were associated with basic house-keeping processes. Digital expression analysis identified 1,971 differentially expressed genes in response to at least one of four stress treatments tested. These included several multiple-stress-inducible genes that could represent potential candidates for use in the engineering of stress-resistant plants. The transcriptomic data generated from pigmented stems shared similarity with findings reported in developing stems of Arabidopsis and black cottonwood (Populus trichocarpa).</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>This study represents the first large-scale transcriptomic analysis of A. hypochondriacus, considered to be a highly nutritious and stress-tolerant crop. Numerous genes were found to be induced in response to (a)biotic stress, many of which could further the understanding of the mechanisms that contribute to multiple stress-resistance in plants, a trait that has potential biotechnological applications in agriculture.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21752295</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>11</Month>
<Day>15</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2164</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>12</Volume>
<PubDate>
<Year>2011</Year>
<Month>Jul</Month>
<Day>13</Day>
</PubDate>
</JournalIssue>
<Title>BMC genomics</Title>
<ISOAbbreviation>BMC Genomics</ISOAbbreviation>
</Journal>
<ArticleTitle>Transcriptomic analysis of grain amaranth (Amaranthus hypochondriacus) using 454 pyrosequencing: comparison with A. tuberculatus, expression profiling in stems and in response to biotic and abiotic stress.</ArticleTitle>
<Pagination>
<MedlinePgn>363</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1471-2164-12-363</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Amaranthus hypochondriacus, a grain amaranth, is a C4 plant noted by its ability to tolerate stressful conditions and produce highly nutritious seeds. These possess an optimal amino acid balance and constitute a rich source of health-promoting peptides. Although several recent studies, mostly involving subtractive hybridization strategies, have contributed to increase the relatively low number of grain amaranth expressed sequence tags (ESTs), transcriptomic information of this species remains limited, particularly regarding tissue-specific and biotic stress-related genes. Thus, a large scale transcriptome analysis was performed to generate stem- and (a)biotic stress-responsive gene expression profiles in grain amaranth.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">A total of 2,700,168 raw reads were obtained from six 454 pyrosequencing runs, which were assembled into 21,207 high quality sequences (20,408 isotigs + 799 contigs). The average sequence length was 1,064 bp and 930 bp for isotigs and contigs, respectively. Only 5,113 singletons were recovered after quality control. Contigs/isotigs were further incorporated into 15,667 isogroups. All unique sequences were queried against the nr, TAIR, UniRef100, UniRef50 and Amaranthaceae EST databases for annotation. Functional GO annotation was performed with all contigs/isotigs that produced significant hits with the TAIR database. Only 8,260 sequences were found to be homologous when the transcriptomes of A. tuberculatus and A. hypochondriacus were compared, most of which were associated with basic house-keeping processes. Digital expression analysis identified 1,971 differentially expressed genes in response to at least one of four stress treatments tested. These included several multiple-stress-inducible genes that could represent potential candidates for use in the engineering of stress-resistant plants. The transcriptomic data generated from pigmented stems shared similarity with findings reported in developing stems of Arabidopsis and black cottonwood (Populus trichocarpa).</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">This study represents the first large-scale transcriptomic analysis of A. hypochondriacus, considered to be a highly nutritious and stress-tolerant crop. Numerous genes were found to be induced in response to (a)biotic stress, many of which could further the understanding of the mechanisms that contribute to multiple stress-resistance in plants, a trait that has potential biotechnological applications in agriculture.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Délano-Frier</LastName>
<ForeName>John P</ForeName>
<Initials>JP</Initials>
<AffiliationInfo>
<Affiliation>Unidad de Biotecnología e Ingeniería Genética de Plantas, (Cinvestav-Unidad Irapuato) Km 9.6 del Libramiento Norte Carretera Irapuato-León, Apartado Postal 629, C.P. 36821, Irapuato, Gto,, México. jdelano@ira.cinvestav.mx</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Avilés-Arnaut</LastName>
<ForeName>Hamlet</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Casarrubias-Castillo</LastName>
<ForeName>Kena</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Casique-Arroyo</LastName>
<ForeName>Gabriela</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Castrillón-Arbeláez</LastName>
<ForeName>Paula A</ForeName>
<Initials>PA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Herrera-Estrella</LastName>
<ForeName>Luis</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Massange-Sánchez</LastName>
<ForeName>Julio</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Martínez-Gallardo</LastName>
<ForeName>Norma A</ForeName>
<Initials>NA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Parra-Cota</LastName>
<ForeName>Fannie I</ForeName>
<Initials>FI</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Vargas-Ortiz</LastName>
<ForeName>Erandi</ForeName>
<Initials>E</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Estrada-Hernández</LastName>
<ForeName>María G</ForeName>
<Initials>MG</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>07</Month>
<Day>13</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Genomics</MedlineTA>
<NlmUniqueID>100965258</NlmUniqueID>
<ISSNLinking>1471-2164</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D027721" MajorTopicYN="N">Amaranthus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019295" MajorTopicYN="N">Computational Biology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020451" MajorTopicYN="N">Contig Mapping</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016208" MajorTopicYN="N">Databases, Factual</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020224" MajorTopicYN="N">Expressed Sequence Tags</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="Y">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018547" MajorTopicYN="N">Plant Stems</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017422" MajorTopicYN="N">Sequence Analysis, DNA</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="Y">Stress, Physiological</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2011</Year>
<Month>04</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2011</Year>
<Month>07</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>7</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>7</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>11</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21752295</ArticleId>
<ArticleId IdType="pii">1471-2164-12-363</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2164-12-363</ArticleId>
<ArticleId IdType="pmc">PMC3146458</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Trends Plant Sci. 2010 May;15(5):275-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20226718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2000 May 1;1465(1-2):324-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10748263</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2006 Sep;67(17):1865-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16859721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2001 Dec;13(12):2731-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11752384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2004 Jul;45(7):897-904</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15295073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2009 Jan;10(1):57-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19015660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2003 Dec;44(12):1266-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14701922</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2007 Jul;12(7):301-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17573231</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1992 May 5;31(17):4308-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1567877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2008;8:115</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19014467</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2009;60:485-510</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19519217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2008 May;10(3):298-309</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18426477</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2011 May;233(5):859-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21225279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2007 Nov;27(22):7771-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17785451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2010 Jun;48(6):469-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20403704</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2011;11:11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21226963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2008;59(8):2133-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18441339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2005 Sep;18(9):923-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16167763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Jul;59(1):110-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19309459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2009 Dec;4(12):1163-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20514236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2008;8:94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18796151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Nov;154(3):1254-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20807999</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Funct Integr Genomics. 2008 Aug;8(3):287-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18305970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 1998 Jun;54(6):582-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9676577</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2011 Jan;75(1-2):167-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21107886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2010;10:47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20230648</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2010 Oct;51(10):1721-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20739306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Jun;54(5):785-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18248595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2010 Dec;33(12):2191-208</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20807374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2011 May;13(3):472-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21489098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2009 Jul;2(4):600-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19825642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2008 Mar;27(3):585-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17924116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(2):e16070</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21347358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2010;11:150</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20199690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechniques. 2002 Oct;33(4):906-12, 914</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12398200</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Res. 2009 Jan;122(1):31-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19104754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2003;54:519-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14503002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2008 Feb;13(2):66-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18261950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2007 Jul;27(14):5214-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17485445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2009;10:299</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19580677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2009 Dec;29(12):1607-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19808707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2010;11:571</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20950480</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2001 Feb;25(3):247-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11208017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 1997 Jul;28(3):405-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9223186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Sep;142(1):233-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16815957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Lett. 2008 Aug;30(8):1501-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18414806</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2007 Aug;25(8):878-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17687366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protoplasma. 2010 Mar;239(1-4):81-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19937357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Dec;56(6):1045-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18764925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Jun;153(2):403-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20388666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2009 Nov;21(11):3700-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19915088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2008 Oct;49(10):1563-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18725370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Funct Integr Genomics. 2010 May;10(2):227-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20186453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>DNA Res. 2001 Aug 31;8(4):153-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11572481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Mar;17(3):836-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15722465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2007 Jan;26(1):71-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16858553</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Apr;146(4):2008-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18305204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2004 Jan;55(394):99-109</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14645393</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Biol. 2001 Mar 1;231(1):113-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11180956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 May;150(1):178-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19321709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2010 Jan;12(1):70-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20653889</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Genet Syst. 2009 Apr;84(2):101-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19556704</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2009;9:69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19497134</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2005 Feb;220(4):593-601</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15375660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 May;34(3):257-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12713533</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Aug;147(4):2084-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18552232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Genet Syst. 2009 Apr;84(2):111-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19556705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2010 Aug;61(13):3799-812</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20603283</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Dec;151(4):1790-801</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19767385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1990 Oct 5;215(3):403-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2231712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2010 Nov;232(6):1339-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20811905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Dec;44(5):826-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16297073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2007;8:428</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18034875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2008;9:312</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18590545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2008 Oct;46(10):928-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18603438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1999 Feb;119(2):681-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9952465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2005 Jul 1;6(4):411-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20565667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2010 Jan 1;425(1):207-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19817716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Mar;152(3):1346-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20044450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Genomics. 2003 Apr 16;13(2):147-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12700361</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2008 Oct;46(10):844-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18653353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biotechnol. 2004 Jan 8;107(1):19-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14687968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Dec;48(5):710-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17076806</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2010 Jun;232(1):187-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20390294</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Jan;146(1):162-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17993545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Dec;130(4):2129-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12481097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Photochem Photobiol B. 2006 Aug 1;84(2):150-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16624568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Genomics. 2003 Jan 15;12(2):159-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12429865</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1994 Sep 23;269(38):23675-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8089137</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Jun;42(5):618-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15918878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2004 Mar;120(3):405-412</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15032837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2000 Dec;10(12):2055-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11116099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Oct;40(2):173-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15447645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1989 Jul;1(7):715-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2535520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2009;9:6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19149885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2003 Jan;44(1):3-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12552141</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2010 Jun;51(6):997-1006</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20410049</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Sep;154(1):245-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20643759</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2001 Apr 18;267(2):193-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11313146</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pest Manag Sci. 2010 Oct;66(10):1042-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20680963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2003 Feb;62(3):247-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12620337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009 Aug;183(3):764-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19549131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Jul;147(3):1412-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18467454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2000 May;25(1):25-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10802651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Jun 1;107(22):10296-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20479230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Nov;52(3):485-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17727615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2005 Mar;46(3):505-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15695433</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Insect Biochem Physiol. 2002 Dec;51(4):204-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12432520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2001 Apr 15;29(8):E41-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11292855</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2007 May;134(9):1643-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17376810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Mar;14(3):559-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11910004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 May;141(1):188-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16514014</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2006 Jan;60(1):41-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16463098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Dec 10;99 Suppl 4:16491-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12151602</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 May;123(1):111-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10806230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2011 Apr;16(4):227-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21227733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2006 Dec;133(23):4691-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17079273</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Mexique</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Aviles Arnaut, Hamlet" sort="Aviles Arnaut, Hamlet" uniqKey="Aviles Arnaut H" first="Hamlet" last="Avilés-Arnaut">Hamlet Avilés-Arnaut</name>
<name sortKey="Casarrubias Castillo, Kena" sort="Casarrubias Castillo, Kena" uniqKey="Casarrubias Castillo K" first="Kena" last="Casarrubias-Castillo">Kena Casarrubias-Castillo</name>
<name sortKey="Casique Arroyo, Gabriela" sort="Casique Arroyo, Gabriela" uniqKey="Casique Arroyo G" first="Gabriela" last="Casique-Arroyo">Gabriela Casique-Arroyo</name>
<name sortKey="Castrill N Arbelaez, Paula A" sort="Castrill N Arbelaez, Paula A" uniqKey="Castrill N Arbelaez P" first="Paula A" last="Castrill N-Arbeláez">Paula A. Castrill N-Arbeláez</name>
<name sortKey="Estrada Hernandez, Maria G" sort="Estrada Hernandez, Maria G" uniqKey="Estrada Hernandez M" first="María G" last="Estrada-Hernández">María G. Estrada-Hernández</name>
<name sortKey="Herrera Estrella, Luis" sort="Herrera Estrella, Luis" uniqKey="Herrera Estrella L" first="Luis" last="Herrera-Estrella">Luis Herrera-Estrella</name>
<name sortKey="Martinez Gallardo, Norma A" sort="Martinez Gallardo, Norma A" uniqKey="Martinez Gallardo N" first="Norma A" last="Martínez-Gallardo">Norma A. Martínez-Gallardo</name>
<name sortKey="Massange Sanchez, Julio" sort="Massange Sanchez, Julio" uniqKey="Massange Sanchez J" first="Julio" last="Massange-Sánchez">Julio Massange-Sánchez</name>
<name sortKey="Parra Cota, Fannie I" sort="Parra Cota, Fannie I" uniqKey="Parra Cota F" first="Fannie I" last="Parra-Cota">Fannie I. Parra-Cota</name>
<name sortKey="Vargas Ortiz, Erandi" sort="Vargas Ortiz, Erandi" uniqKey="Vargas Ortiz E" first="Erandi" last="Vargas-Ortiz">Erandi Vargas-Ortiz</name>
</noCountry>
<country name="Mexique">
<noRegion>
<name sortKey="Delano Frier, John P" sort="Delano Frier, John P" uniqKey="Delano Frier J" first="John P" last="Délano-Frier">John P. Délano-Frier</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002C66 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002C66 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:21752295
   |texte=   Transcriptomic analysis of grain amaranth (Amaranthus hypochondriacus) using 454 pyrosequencing: comparison with A. tuberculatus, expression profiling in stems and in response to biotic and abiotic stress.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:21752295" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020